CONVERGING SHOCK WAVE IN IDEALLY INELASTIC
MEDIUM AND STABILITY OF CIjMULATION
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INTRODUCTION

The focusing of shock waves has attracted the attention of a number of scientific investigators (see
the survey in [1]). The self-shaping converging state of a shock wave has been primarily the subject of
their investigations. Since the focusing problem is in itself very complex, its stability has been but liftle
studied. As far as we can ascertain there is only one article [2] on stability of a converging shock wave in
which a similar approach was employed.

In the present article a boundary-value problem is considered for a converging shock wave in a cylin-
der or in a sphere, as well as the evolution of small multidimensional perturbations, if the motion of this
wave is towards the center in an ideally inelastic medium whose material puts to the test the uniform con-
solidation at the front of the shock wave independent of the wave amplitude. A similar approach was em-
ployed in the analysis of the motion of a diverging shock wave [3]. The behavior of actual materials (pow-
ders, very porous bodies) is simulated in the domain of heavy loads., The solution of this kind is suitable
in applications such as, for example, molding various parts from powders. From the theoretical point of
view the problem is interesting as représenting a case of cumulation which can be investigated quite ad-
equately. The results are compared with those of converging acoustic shock, the comparison being signifi-
cant for the following reasons. For any ideal medium a variable parameter % is introduced equal to the
ratio of the velocity at the front of the shock wave to the sound velocity not in the front. It should be men-
tioned that 0 =w = 1 in view of a necessary condition for stability. The case of ® = 1 corresponds to the
acoustics case. The medium under our consideration is characterized by the parameter value ® = 0, Thus
the acoustic medium and the model of the ideal inelastic medium appear to be diametrically opposite cases
in.the asymptotics as regards the parameter .

The tangential stresses can be ignored, since they are bounded by the yield limit, and the pressure
amplitude of the arising strong shock wave increases as it arrives closer to the center. High temperatures
arise at the front due to large losses on irreversible deformations, the yield limit vanishing in the melting
state,

The solution of the symmetric convergence of a shock wave to the center or to the axis is obtained in
the same way as in [3]. The asymptotics of the solution for R — 0 (R is the front radius) are also analyzed.
It appears that the amplitude increases considerably more than in the previously studied cases of uniform
media [1, 4, 5]. The system of equations for the amplitudes of the perturbation harmonics is integrated
twice and reduces to a single ordinary integrodifferential equation for the perturbation of the front surface.
For low consolidation the solution can be analyzed asymptotically. The equation is solved by numerical
methods for consolidation parameters of the order of unity. The instability is noticed of the zeroth and the
first harmonics. Other harmonics are stable.

1. Let there be a uniform sphere (or cylinder) of radius R, to whose surface one applies suddenly
the pressure Py (t) at the time t = 0. The load instantly reaches its maximal value and then decreases mono-
tonically. The original density of the medium is py It is assumed that having reached a nonzero pressure
at a point of the medium the density becomes equal to py = const. This simple framework is used as a
model for porous bodies in the region of high pressures. Of course, a shock wave will then spread from the
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surface towards the center. Let r = R(t) and r = Ry (t) be the laws of motion of the front of the shock wave
and of the surface, respectively, and let U be the mass velocity.

A mathematical formulation is now given. To find the limits of the region for the motion R (t) and
Ry (t), as well as the functions P (r, t) and U(r, {) defined in the region Ry () < r < R (t) which both satisfy the
following equations of motion and of continuity in the interior of the region and the conditions at the front
of the shock wave and on the surface:

_ﬁj_}_[/.&r_p}_a——g:o; (1.1
%o(f;:f") =0, R,(#)<r<R()
U—’;Goi{; P-—:poﬁol:l” (r=R(V));
P=P1); U=R, (r==Ry(t)).

In the above ¥ = 1, 2 correspond-to the case of a cylinder or a sphere 8¢ = (p1— P ¥ P1, Ry (0) = Ry, the dot at
the top denoting the time derivative (R is the front velocity for the shock wave).

It follows from the continuity equation and from the first condition at the front that
U =8, R(RITV;, R =(1—0)Ry™ 10,R", (1.2)

Inserting the expression for U in the first equation of (1.1) and integrating with respect to r from
r =R to r = Ry, one obtains

RR+ - AR* =B, (R (0) =Ry, R ©) = V B, (0)p.05);

2 — 6, (1+ R*/R) 2— 6, (14 RY/R})

Ay =2+ Ay =4+

In (B/RY) 3 R/B, —1 ;
- Py (1) . e Po )
Bi=tmmnwry BT e mm Ty

We set x =R/R,, g = Poﬂoi{z/ Py(0) and consider Py = Py(x) without making any change in the notation,
that is, the load is given as a function of the front radius. In our case this is not an essential limitation.
It is noted that any monotonically decreasing function Py(x) is associated with a monotonically decreasing
function Py(t); to solve the problem for any specific load Py(t) one has to find Py(x) in such a way that this
association is observed (the so-called semiinverse method). Our aim is to study the behavior of the solution
for x —+ 0 which has turned out to be independent of the boundary condition. Our assumption is not essential
for a time-persisting pulse on the surface which can be simulated by a "step.”

In dimensionless variables Eq. (1.2) assumes the form

s Ag =By (g(1)=1), (1.3)

1
_2(1—8y) Py(2) _ 2(4—8)Py(x) . R _[1—8 _ei
B = mrreor B = m ity w o t 0]

For x— 1 Ay and By possess singularities: A, and By, a logarithmic singularity; A, and B,, a power
singularity. It can be shown that the solution of (1.3) is given by the improper integral

g(z) = lim {exp[»- Fy(z,9) | €' B, @ exp F (E o) dz},
&0 1—e
where

Fy(ze)= | 54 @) .
1—e
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By separating the singularities the solution can be reduced to quadratures, namely,

(x Inz)?

g= GO Feange B @ explCy (B)1dE (v=1); (1.4)
1 .

_ Gl [ty B, @ e 6,01 (v =2
t

2 (1 — x)?

In the above one has

[2—0,(1-8) 2 |4k,
o= [=AER |4,
1
c _"j 2 2-0,(14F) az
@ =lr T |

where
TE=E(1—0, + QY)Y
The function U (r, x) can be found from the first relation of (1.2); to obtain P (r, X) one has to integrate

the first equation of (1.1) between a point r inside the region and r = Ry (and not from r = R as was done
previously). For these quantities the expressions at the front follow from (1.1). They are

U VR RE @, PP

The function x = x (t) can be obtained from the equation

x

- " 0By _dv
=RV 5 e

and the remaining sought-for functions, as well as the function P, become known either as functions of the
variables r, t or only of t.

The asymptotic behavior of the functions g for x — 0 follows from (1.4),

1
22 |In 112_6"

1 .
g~ (v=1); g~ =, (v=2).

6,
The asymptotics of the functions P and U at the front for x — 0 are as follows:

1 1

~ A UNW (v=1); (1.5)

P~ U !

20 T T 02

(v=2).

It should be noted here that 0 < 6y < 1,
Just as one expected, no effect is exerted on the asymptotic behavior by the boundary condition.

For the sake of comparison, the cases of a converging acoustic jump (linear acoustics) and of a con-
verging shock wave in an ideal gas are now analyzed. The growth of pressure amplitude in the acoustic case
isP~xY2forv=1andP ~xfor v=1. In an ideal gas [4, 6] one has P ~ x'k, where k ® 0,79 for the
adiabatic exponent ¥ = 7/5, k™ 0.49 for v = 0, k— 1.4 for ¥ — « (v = 2). It follows from (1.5) that our
case differs from the above cases in that there is a stronger singularity (cumulation degree) of the quanti-
ties at the front. It appears that such a strong cumulation is caused not by the front curvature as in the
acoustics (otherwise, the index of the power would be twice as high for a sphere as for a cylinder), but by
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the hard braking of the part of the sphere or of the cylinder actually in motion
on the shock wave when the latter approaches the center.

The behavior of the functions is now analyzed inside the region for x — 0.
It follows from the relations for U(r, x) and P (r, x) that if r is kept constant
and with x — 0 one has

1 . " 1n (r/Ry) —1).
~ riln 7|t —00/27 z2{ln 1\3_9" (V 1)’ (1-6)
1—-8,/2 1— /R '
~ 7E P~ zi-ir-enl (v=2)
Fig. 1 The total kinetic energy of the medium is
R
E = 2mvp, | Udr
R,
and for x — 0 it is asymptotically
E~jnzf*™t (v=1); E~a"% (v=2). (1.7

Thus any fixed point, as well as the entire medium, is brought to a standstill with x — 0 [(1.6), (1.7)].

It can be shown by energy considerations that no motion arises after focusing and that the solution is
given by

P(r, )=Py(t); U(r, )=0.

It follows from (1.6) that the pressure has at any point Ry < r < R a singularity for R — 0, However,
the interval energy density remains bounded, since the deformation remains bounded. The distribution of
the specific internal energy e (per unit of mass) is given by

1 _ g
¢= 35 0o '0,2, (0) g (r/Ry).

The above expression for the function e was obtained by taking into account that the entire interval
energy in this model is thermal energy (the elastic energy is not stored) and, moreover, the heat conduction
is ignored. If an additional assumption is made on the relation of the temperature T to the internal energy,
then the function T = T (r) can be obtained.

By way of illustration we shall carry out some calculations, In Fig. 1 graphs are shown of the pres-
sure amplitude at the front vs the front coordinate (cylinder case). The shape of the load applied to the sur-
face is "steplike" (the upper continuous curve) or rectangular (two neighboring continuous curves) and is of
a duration which is equal to the time during which the wave passes half or a quarter of the cylinder mass,
respectively. The value of 6, was selected as 0.25. The dashed line shows the curve for 6, = 0.5 for a step-
like load. For a constant load one observes a continuous growth of pressure at the front, and the smaller
6 is (thatis, the more "rigid"the medium) the more rapid is the growth of amplitude due to smaller losses on
‘irreversible deformation. However, it follows from numerical calculations, as well as from the formulas
(1.5), that the cumulation is slightly stronger in 2 medium with a larger 6, (this is hardly noticeable in the
graph), :

If the impulse is finite, then the pressure at the front grows as long as the load operates; after the
load has dropped down the pressure falls very rapidly — now the damping takes place in view of irreversible
losses, the minimum is reached, and, finally, it reaches the asymptotic portion in accordance with (1.5)
somewhere considerably nearer the center than in the case of a "step."

The stability problem always arises [1] when unbounded cumulation is studied. In Sec. 2 a more com-
plex problem is solved on the evolution of small disturbances downstream from the front of a shock wave
moving towards the center and some conclusions are reached on the cumulation stability.
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2. The effect is now considered in linear formulation of small non-one-dimensional perturbations on
the motions of the medium which were studied in Sec. 1. The source of the disturbances is the boundary at
which small disturbances in the applied load take place. The caseofa cylindrical converging wave is con-
sidered in more detail. It is assumed that the disturbances are constant along a generator of the cylinder
(variations of disturbances have, of course, no effect on the stability of cumulation). Then the system of
equations for small disturbances in polar coordinates r, ¢ is given by

dw | a(Uw) , 1 apT
Gt T =0 2.1)
w | Udwr), 1o o
at v or ' prag 1
L2+ =0, (R <r<R().

In the above p’', u' and w' are small perturbations of pressure or of velocities in r and ¢, respectively.

The equation of the front surface is sought for in the form

r=R(H) — (9, 1),

where f' is a small perturbation of the front surface.

Similarly as in the two-dimensional case [7, 8], one can obtain from the conservation laws at the drop
the conditions at the cylinder front r = R (t) of the shock wave:

P’ = — 2p,0,R a’_f’; W= —8, {7; (2.2)
v = 9—;— 527 .
For r = Ry (t) the following conditions must be satisfied:
P =r; =) (2.3)

Physically, the second condition indicates that there is a slight time divergence for the start of the
external load at different points of the cylinder surface,

The problem of small perturbations beyond the converging cylindrical shock wave is then reduced to
a mathematical problem of finding the functions u', w', p', f' which satisfy Eqs. (2.1) and the conditions

(2.2) and (2.3). The system of equations (2.1) is elliptic and a boundary-value problem is formulated for the
latter.

The following change of variables is carried out:

u=u'Ry/r; w=w’r/Ro; =p RO/(leR) f=F8,/Ry; (2.4)
h=r1%Ry;, ©=RYR}; v,=R}Ri=1—10,+6,7

and the unknown functions are sought for in the form of Fourier expansions: u, p, f in sinng and w in

cosn®. The system of equations (2.1) and the conditions (2.2) and (2.3) for the amplitudes of the harmonics
result in

du, Un apn
v +90 T =0

! (2.5)
0wn 0 "’Pn a ( uhy  nw,
3 % i —m =0
(n<h <7
- df af, .
pn=—4(1—90)1{—#; Up = —2R———; wp==nRf, (h=r1)), (2.6)

743



Pn=Pa0(T); Fu=Ffno (h=Ty), 2.7

where n is the ordinal number of a harmonic (n = 0, 1, 2,...), the variables p,, u, and
wy, are of the dimension of the velocity, and the remaining variables are dimensionless;
similarly as in the last section the load perturbation is specified as a function of the
front radius, and with no change in the notation it is considered that R = R(T).

It is easy to change the variables (2.4), since the first two equations of (2.5) have
Fig. 2 constant coefficients and the integration domain in the plane of h, 7 is a triangle (Fig. 2)
0< T<1,1-6y+ 8,7 < h< T whose sides are h = 7 (the front of the shock wave),
h = 1-8, + 8,7 (the cylinder surface), and 7 = 0 (the focusing instant).

One eliminates p,, from the first two equations of (2.5); the obtained relations are then integrated be-
tween u, and wy, from any point of the front h = 7 back into the integration region along the straight line
parallel to the boundary h = 1~ 8, + 8,T; finally, the function uy is eliminated from the obtained equation and
the third equation of (2.5). One thus arrives at an equation for w,, namely,

0w duy, 2
122'5}7571 +h-5h—'—%wn= Pn- (2.8)
In the above one has
=g fwimm—3 .
Yo = 0h{ n)p AN 1 5 Yn (n, n)]}:

where

h— B,
T—8,

What is noticeable about Eq. (2.8) is that its left-hand side contains no derivatives with respect to 7
and its right-hand side depends on the values of wy, and uy at the front h = 7. If one wishes to reduce the
problem to the finding of a single function, one expresses u, and dwyp/dh at the front in terms of f n- The
function up (T, 7) is related to f(7) by the second relation of (2.6). Differentiating the third relation of (2.68)
in the coordinate system which moves together with the undisturbed front one obtains

dw, dw,  d(Bf,)
T =rw G=7

and by eliminating dwn/ dr by virtue of the second equation of (2.5) and the first condition of (2.6) one finds

aw, o ARy onit .

ah 1—08y dt dr?
a n d(i?fn) > dfn:l}

One now obtains all the expressions in the square brackets as functions of 7 by the formal replace-
“ment of T by 7.

The condition for wy, on the cylinder surface follows from the second equation of (2.5); the former is
consistent with the third condition of (2.6),

o= — 2 | pup(?) @V 4 R (W) fao=p(1) (b =1—8,+6).
i

Another independent variable, ¢ = (nlnh)/2, is now introduced. One has

2

. 0w, ~
A<{<B: T::_wn"—_ﬂ?n; 2.9)
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. ‘ oy,
C=ddt wn=py(7); = (1) (2.10)
{=B: wy=p()
/ af Pag ()
fu1) = fagy 2 =—~ﬂ-,—).
|’ "odtk=t T ey R

In the above

Int; B=+pIn(l—08,-+057); w,=niin;

’

A=1

n
2
1

o= 21 L__e 200 _ 2k H Tl (), v fal = (0,7 ).

The original problem has thus been reduced to the problem of determining two functions: wy (£, 7)
and f,, (7) which satisfy Eq. (2.9) together with the boundary conditions (2.10). The latter possess the fol-
lowing special features. In Eq. (2.9) there appears a derivative of wy with respect to 7. The function fa™
and its first derivative appear on the right of (2.9), and in the conditions (2.10) as a boundary function. The
process of obtaining the solution can therefore be subdivided into two stages. Firstly, one obtains its solu-
tion by regarding (2.9) as an ordinary inhomogeneous differential equation for wy,. The function f, is con-
sidered as known, the variable T is considered as a parameter, and since the number of conditions exceeds
by one the number of unknowns, only the second and the third boundary conditions of (2.10) are taken into
account, In the solution thus obtained wy, is expressed in terms of Fn. Subsequently, by satisfying the first
condition of (2.10) one arrives at an equation for the single function f . :

The Green's function F (L, &) for Eq. (2.9) which satisfies the conditions

aF
Thoa=0 FBH=0

is given by

N

Fol ch (B — 4) ’

l ch(¢ — A)ysh({— B)

i ¢h(L — A)ysh(t — B) ¢
ch(B — A) ' g

\Y

The solution of Eq. (2.9) with appropriate boundary conditions can now be written as

B
' ~ - h(c— B ht— A
Wy :A‘ F(C, g) Y (ga T; fn) dS +l-‘»2 cshl‘((; —-—A; +p SC]]!{%—A; .

The last of the boundary conditions (2.10) is now satisfied and after some transformations one arrives
at the following integrodifferential equation for f,:

!

i df,,
o2 = (b2 4 efu () + d) am; (2.11)

(Ifll

Pry (D)
fn(1):fnoa [T[T_ .

=1 —4(1—90)1'2(1)'

In the above one has

a=n—1tR 1 +9) ((:L::/2 — a:“’ﬂ); b == —;— R (a2 — a2y,
14+-0R , ., Y 1 ,
o= 2GRS @ — a2 d= 3 pu(1); @ == (001 + 6o);
ay=(1 4+ 0)T/(t + 01); 0=0,(1—0,); R=R(x).
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Having found f [solving (2.11) numerically is not particularly difficult] the remaining sought-for
functions are now found, since they can be expressed by means of f,.

The solving process is now studied for small values of the parameter 6. Differentiating both sides of
Eq. (2.11) with respect to T and neglecting small quantities for # « 1 one obtains the equation

FE oy mh T E

&, 1[1+ dln(R(z))+Zn(1—,—.z2)] ntz  2nR(2) py, ()
“dr

where
T a(@)=Fa(¥(@))=Fn(z?).

The same equation could be obtained by ignoring small quantities of higher orders in Eqgs. (2.1) and
then reducing this simplified problem to an equation for the single function f a
Asymptotically, the function fn for x = 0 (denoted by ]7 o satisfies the equation

&7, df, -
.Zz—d—z%l-— 2n$7é! -I— nzfn == 0,
whose general solution is given by

(1) (2)
fn = clx"" +cy z"

where c; and c, are constants and lg)’(z) =n+ 1/2 sVn+ Y,

The asymptotic behavior of f pnforx—20 depends on the value of the lowest exponent, that is,

1 3
nrg) e (2.12)

falz—0)~z s

withn+ ¥, ~-vn+¥,=20@m=0,1,2,...).

. The stability or instability of symmetrical focusing is characterized by the ratio of the perturbation
amplitude of the front surface to the front radius,

_ =0
Fo o Vil T oets (2.13)
B g, ocn—n——-— n+~= — 0618, n=1
o 0, n=2

2, >0, n>2.

The first harmonic is thus unstable, the second is relatively stable, and a harmonic n > 2 is absolutely
stable (of course, the harmonic with n = 0 does in no way indicate the focusing stability).. One notes at the
same time that one has f —~0(n=1,2,..., x— 0), that is, the front confracts towards the center of the
axis though not asymmetncally in view of fi/x — © (x = 0).

Since at the front the quantities pn/ P, un/ U and dfn/ dx are of the same order for x — 0, therefore
the asymptotic formulas for the relative quantities of pressure disturbance and velocity are similar to
(2.13). -

These results are now compared with the acoustic case. The growth of perturbations at the front of
a converging acoustic jump is ~x~1, Consequently, in acoustics the instability manifests itself more
strongly: for n = 1 the growth rate of disturbances is considerably higher than for the case under considera-
tion; for n = 1 the singularity persists inthe acoustic case but it vanishes for (2.13). In acoustics [1] the
focusing is disturbed and "spreads over" a finite region., In this casethe front contracts towards the cen-
ter. However, due to the growth of disturbances the solution obtained loses its force and the problem of
asymmetric focusing remains an open problem.
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To take into account the dependence of the behavior of ]-;n and p;l at the front on the parameter 6 a
program for a numerical solution of Eq. (2.11) was constructed using the finite-difference method.

The results are shown in Figs. 3-6. Continuous curves show ]?n = fn (x), and dashed ones, '—p;l/ =
pr'1 x)/P (x) for the values ¢ = (pi—po)/po ='0.1, 2, 0. The input data for the computations were

- df,
Fro=1 = = —1; Py(x) = png(x) = const.

=1

It can he seen from the graphs that for 6 = 0.1 the asymptotics begin for x ® 0.2—0.3 being in agree-
ment with the results of (2,12) and (2.13) valid for # « 1, By comparing these curves with those corre-
sponding to the value 8 = 2.0 several qualitative differences can be noticed: for 6 = 2.0 oscillations of the
perturbations can be observed. However, the stability for the values of 6 of the order of unity is found
similarly as in the case of 6 « 1,

To explain the perturbation effect outside the front region the disturbance was evaluated of the normal
velocity of particles of the cylinder surface ur'l. The disturbance grows monotonically, remaining bounded
for x = 0. This pattern of u;, seems natural, since a fluid cylinder acted upon by an asymmetric pressure
on the surface becomes large in the course of time. '

The case of a sphere is briefly considered. For & « 1 for the asymptotics of the radial component
fam of the disturbance of the front surface one obtains, as in the preceding case, the equation

2d£‘?nm [i}fnm
R —(@n+ )z dz +r@+1) fom = 0.

The lowest exponent A, for particular solutions x)‘n of this equation is A, =n+ 1~Vn+ 1. The
asymptotic formula for f,,/x is given by

Frm/ T~ an — VT

For n = 1 this exponent is ® —(.43; for n > 1 it is positive.
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Therefore, all our conclusions as regards the focusing instability in the cylinder case remain also
valid in the spherical case.

In conclusion, one should mention the following. The problem of a converging shock wave was analyzed
mathematically with sufficient completeness in view of the simplicity of the chosen state equations. From
the physics point of view the analyzed case is interesting, since it differs from the other analyzed cases of
focusing for shock waves in homogeneous media by a high degree of cumulation, The analysis of the as-
ymptotics of the disturbance harmonics has shown that only two harmonics can grow (the null and the first
one), the singularity of the harmonic with n = 1 being smaller than in acoustics. Therefore, our case of
strongest cumulation is at the same time of "highest stability."

It was mentioned in the introduction that the fact that the ideally inelastic and the acoustic media are
limiting models of ideal media as regards the parameter ® enables one to put forward a hypothesis that for
an ideal medium which only differs substantially from the limiting one by the value of the parameter n our
results are of intermediate character.

The focusing stability in a complex ideal medium was studied in an approximate manner in [2], and
for low frequencies the result of unstable symmetric focusing was obtained. According to the statement
made by the author in [2] this result becomes asymptotically exact for » — 1. Since in our case the as-
ymptotics in the parameter % are different (® — 0), the results obtained in the above-cited article and by
us do not overlap.

The author would like to thank N. V, Zvolinskii for his comments.
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